第一句子网 - 唯美句子、句子迷、好句子大全
第一句子网 > 基于球面模块化数字阵列天线的接收通道电路和阵列天线的制作方法

基于球面模块化数字阵列天线的接收通道电路和阵列天线的制作方法

时间:2021-07-31 12:40:59

相关推荐

基于球面模块化数字阵列天线的接收通道电路和阵列天线的制作方法

本实用新型涉及阵列天线领域,尤其涉及基于球面模块化数字阵列天线的接收通道电路和阵列天线。

背景技术:

由许多相同的单个天线(如对称天线)按一定规律排列组成的天线系统,也称天线阵。俗称天线阵的独立单元称为阵元或天线单元。最常用的线阵是各单元的中心依次等距排列在一直线上的直线阵。线阵的各单元也有不等距排列的,各单元中心也可以不排列在一直线上,例如排列在圆周上。多个直线阵在某一平面上按一定间隔排列就构成平面阵,若各单元的中心排列在球面上就构成球面阵。

cn10705690.9公开了一种球面数字阵列天线,包括球形天线,所述球形天线的表面均匀排列设置有31个天线单元;所述天线单元采用背腔十字交叉微带贴片天线,通过功分网络和90°移相延迟对交叉贴片的两个馈电点分别进行馈电,实现宽带宽角的圆极化特性;所述球形天线通过支撑柱与电气盒连接;电气盒底部安装在底座内;所述球形天线内部设置有多路低噪放与下变频模块;所述电气盒内部设置多路adc数据转换与光通信模块、校准网络模块、以及馈电模块;其中,天线单元用于电磁波的接收;低噪放与下变频模块用于信号的放大、滤波及下变频;adc数据转换与光通信模块用于信号采样、数字下变频、速率变换、数据高速传输;校准网络模块实现天线的内校准;工作过程中,天线单元接收到信号后,通过耦合器的直通端进入低噪放与下变频模块,低噪放将接收到的信号进行放大、滤波,产生200mhz带宽中频信号,经a/d采样、数字混频、抽取后进入数字信号处理器对接收到的信号进行处理,最后输出所需的信号。然而在该专利中的接收通道部分,仅具有耦合器和低噪放,并不能保证系统的灵敏度和抗干扰能力。

因此,针对上述问题,提供一种基于球面模块化数字阵列天线的接收通道电路和阵列天线,保证系统的灵敏度和抗干扰能力的前提下,实现下变频和增益调节功能,是本领域亟待解决的技术问题。

技术实现要素:

本实用新型的目的在于克服现有技术的不足,提供一种基于球面模块化数字阵列天线的接收通道电路和阵列天线。

本实用新型的目的是通过以下技术方案来实现的:

本实用新型的第一方面,提供基于球面模块化数字阵列天线的接收通道电路,包括顺次连接的前端电路和变频信道;

所述前端电路包括顺次连接的耦合器、滤波器、限幅器、第一低噪声放大器lna1、第一带通滤波器、第二低噪声放大器lna2、高通滤波器、第一数控衰减器、第三低噪声放大器lna3和移相器,其中所述耦合器的第一输入端接入外部射频信号rf,耦合器的第二输入端接入校准分配信号cal;

所述变频信道包括顺次连接的混频器、第一固定衰减器、第二带通滤波器、第四低噪声放大器lna4、第二数控衰减器、第一低通滤波器、第五低噪声放大器lna5、第二固定衰减器、第二低通滤波器、均衡器,其中混频器的第一输入端与移相器连接,混频器的第二输入端接入外部本振分配信号lo,均衡器的输出端输出中频信号if。

进一步地,所述外部射频信号rf由所述数字阵列天线的天线单元产生。

进一步地,所述接收通道电路为多个,每个接收通道电路输入的校准分配信号cal均由校准分配电路生成,每个接收通道电路输入的本振分配信号lo均由本振分配电路生成。

进一步地,所述校准分配电路包括至少一个第一功分组件,所述第一功分组件均包括第一一分二功分器u2和第一一分四功分器u1,第一一分二功分器u2的输入端s连接第一频率源,第一一分二功分器u2的第二输出端p2连接至第一一分四功分器u1的sum端,第一一分二功分器u2的第一输出端p1通过电阻r7接地;第一一分四功分器u1的第一输出端p1、第三输出端p3和第四输出端p4分别输出三路校准分配信号cal,第一一分四功分器u1的第二输出端p2通过电阻r47接地。

进一步地,第一一分二功分器u2的型号为gp2y1,第一一分四功分器u1的型号为wp4u。

进一步地,所述本振分配电路包括至少一个第二功分组件,所述第二功分组件均包括第二一分二功分器u5和第二一分四功分器u4,第二一分二功分器u5的输入端s连接第二频率源,第二一分二功分器u5的第二输出端p2连接至第二一分四功分器u4的sum端,第二一分二功分器u5的第一输出端p1通过电阻r27接地;第二一分四功分器u4的第一输出端p1、第三输出端p3和第四输出端p4分别输出三路本振分配信号lo,第一一分四功分器u1的第二输出端p2通过电阻r145接地。

进一步地,第二一分二功分器u5的型号为gp2y1,第二一分四功分器u4的型号为wp4p。

本实用新型的第二方面,提供基于球面模块化数字阵列天线,包括多个所述的接收通道电路和与所述接收通道电路输入端连接的天线单元。

进一步地,所述数字阵列天线还包括adc数字采样模块,所述adc数字采样模块的输入端接收所述中频信号if。

本实用新型的有益效果是:

本实用新型在保证系统的灵敏度和抗干扰能力的前提下,实现下变频和增益调节功能。另外可以保证信道的谐波抑制,首先需要保证信道在大功率输入的情况下,依然工作于线性状态,在本方案中当最大功率-30dbm输入时,通过调整数控衰减器来保证信道的线性状态;其次通过带通或低通滤波器抑制谐波:在混频器后采用带通滤波器的方案,对谐波及杂散的抑制达到-70dbc以上,对本振泄露抑制可达-100dbc以上。满足二次、三次谐波抑制≤-60dbc的指标要求。而且镜像抑制主要由混频器前的输入滤波器抑制,如前所述,信道中采用了两级带通滤波器,其镜频抑制可高于100dbc,满足镜频抑制≥60dbc的指标要求。

附图说明

图1为一示例性实施例提供基于球面模块化数字阵列天线的接收通道电路的连接示意图;

图2为第一功分组件的电路连接示意图;

图3为第二功分组件的电路连接示意图。

具体实施方式

下面结合附图对本实用新型的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。

在本实用新型的描述中,需要说明的是,属于“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系为基于附图所述的方向或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,属于“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。

在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,属于“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。

此外,下面所描述的本实用新型不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。

参见图1,图1示出了其中一示例性实施例提供基于球面模块化数字阵列天线的接收通道电路,包括顺次连接的前端电路1和变频信道2。

其中,前端电路1主要用于保证系统的灵敏度和抗干扰能力(灵敏度主要前级无源电路(耦合器、带通滤波器)的低插损和lna的低噪声放大性能;而抗干扰主要依靠滤波器的选择性能),而变频信道2接在前端电路1后,主要用于下变频、增益调节。

具体地,所述前端电路1包括顺次连接的耦合器101、滤波器102、限幅器103、第一低噪声放大器lna1104、第一带通滤波器105、第二低噪声放大器lna2106、高通滤波器107、第一数控衰减器110、第三低噪声放大器lna3108和移相器109,其中所述耦合器101的第一输入端接入外部射频信号rf,耦合器102的第二输入端接入校准分配信号cal。

在前端电路1中,耦合器101用于在接收射频信号rf的同时注入校准分配信号cal,并使接收信号尽可能小插损的通过;滤波器102用于抑制外部辐射的干扰信号;限幅器103用于保护信道不被带内大功率干扰信号损毁(保护设备在接收输入不小于1w的信号时不被烧毁);第一低噪声放大器lna1104用于实现第一级低噪声放大;第一带通滤波器105用于实现镜频信号抑制;第二低噪声放大器lna2106用于实现第二级低噪声放大;高通滤波器107用于实现镜频信号抑制;第一数控衰减器110为程控器件,可对信号幅度进行调节,在一示例性实施例中最小步进0.5db;第三低噪声放大器lna3108用于实现第三级低噪声放大;移相器109为程控器件,可对信号相位进行调节,在一示例性实施例中最小步进5.6°。

而对于各器件的具体参数,可采用下表内容实现:

所述变频信道2包括顺次连接的混频器201、第一固定衰减器、第二带通滤波器202、第四低噪声放大器lna4203、第二数控衰减器204、第一低通滤波器、第五低噪声放大器lna5205、第二固定衰减器206、第二低通滤波器207、均衡器208,其中混频器201的第一输入端与所述移相器109连接,混频器201的第二输入端接入外部本振分配信号lo,均衡器208的输出端输出中频信号if。(其中,图1中未示出第一固定衰减器和第一低通滤波器)

在变频信道2中,第一数控衰减器为程控器件,可对信号幅度进行调节,在一示例性实施例中最小步进0.5db;混频器201用于将射频信号与本振分配信号lo进行混频,并下变至中频;第一固定衰减器可调试定位,用于调整信号增益分配;第二带通滤波器202用于对混频过程中带来的杂散进行抑制;第四低噪声放大器lna4203用于实现第四级低噪声放大;第二数控衰减器204为程控器件,可对信号幅度进行调节,在一示例性实施例中最小步进0.5db;第一低通滤波器用于对中频谐波进行抑制;第五低噪声放大器lna5205用于实现第四级低噪声放大;第二固定衰减器206可调试定位,调整信号增益分配;第二低通滤波器207用于对中频谐波进行抑制;均衡器208对带内平坦度进行修正。

而对于各器件的具体参数,可采用下表内容实现:

而对于上述器件的参数合计为:

因此,在一示例性实施例中,单独一个信道单元的最大增益为61.3db,链路中的固定衰减器位置为调试位,它为整个信道增益提供出大约10db的余量。链路净功耗为:286ma×5v≈1.4w。整个阵列信道的功耗即为:1.4×31=43.4w。最大增益为61.3db,电平可调范围为63db,步进为0.5db(由数控衰减器保证)。

在一示例性实施例中,输入频率范围:2200~2400mhz,步进0.1mhz。需要注意的是,公共通信信号(如3g信号、wifi信号等)距离该频段较近,需要进行抑制以降低干扰(因此在电路中采用多个电路结构实现抑制)。而通过一级下变频,中频频率范围275mhz~475mhz。

具体地:本示例性实施例保证信道的谐波抑制,首先需要保证信道在大功率输入的情况下,依然工作于线性状态,在本方案中当最大功率-30dbm输入时,通过调整数控衰减器来保证信道的线性状态;其次通过带通或低通滤波器抑制谐波:在混频器后采用带通滤波器的方案,对谐波及杂散的抑制达到-70dbc以上,对本振泄露抑制可达-100dbc以上。满足二次、三次谐波抑制≤-60dbc的指标要求。

而镜像抑制主要由混频器前的输入滤波器抑制,如前所述,信道中采用了两级带通滤波器,其镜频抑制可高于100dbc,满足镜频抑制≥60dbc的指标要求。

更优地,在一示例性实施例中,所述外部射频信号rf由所述数字阵列天线的天线单元产生。天线单元属于现有技术,在此不进行赘述。

更优地,在一示例性实施例中,所述接收通道电路为多个,每个接收通道电路输入的校准分配信号cal均由校准分配电路生成,每个接收通道电路输入的本振分配信号lo均由本振分配电路生成。

其中,接收通道电路的数量与实际设计相关,并且每一个接收通道电路均可配置一个对应的天线单元。

更优地,基于上述示例性实施例的实现,在一示例性实施例中,所述校准分配电路包括至少一个第一功分组件3,如图2所示,所述第一功分组件3均包括第一一分二功分器u2和第一一分四功分器u1,第一一分二功分器u2的输入端s连接第一频率源(图中的cal_in),第一一分二功分器u2的第二输出端p2连接至第一一分四功分器u1的sum端,第一一分二功分器u2的第一输出端p1通过电阻r7接地;第一一分四功分器u1的第一输出端p1、第三输出端p3和第四输出端p4分别输出三路校准分配信号cal(即图中的a3_cal、a4_cal、a5_cal),第一一分四功分器u1的第二输出端p2通过电阻r47接地。

也就是说,在本示例性实施例中,每个第一功分组件3可实现三个校准分配信号cal的输出,分别输出至三路接收通道电路。而根据实际接收通道电路的数量,配置并行的对应数量的第一功分组件3。

另外,在一示例性实施例中,第一一分二功分器u2的型号为gp2y1,第一一分四功分器u1的型号为wp4u。

gp2y1为mini-circuits的2路分路器/合路器,其特征包括:(1)宽带,1550至4400mhz;(2)良好的隔离,20分贝典型值;(3)卓越的振幅不平衡,0.04db典型值;(4)相位不平衡良好,典型为0.6度;(5)小尺寸,0.118x0.118x0.035;(6)高静电放电水平;(7)水洗。

wp4u为mini-circuits的4路分路器/合路器,其特征包括:(1)良好的隔离性,28分贝典型值;(2)良好的相位不平衡,1度典型值;(3)卓越的振幅不平衡,0.2db典型值;(4)小尺寸,0.118x0.118x0.035;(5)高静电放电水平;(6)水洗。

更优地,基于上述示例性实施例的实现,在一示例性实施例中,所述本振分配电路包括至少一个第二功分组件4,如图3所示,所述第二功分组件4均包括第二一分二功分器u5和第二一分四功分器u4,第二一分二功分器u5的输入端s连接第二频率源(图中的lo_in),第二一分二功分器u5的第二输出端p2连接至第二一分四功分器u4的sum端,第二一分二功分器u5的第一输出端p1通过电阻r27接地;第二一分四功分器u4的第一输出端p1、第三输出端p3和第四输出端p4分别输出三路本振分配信号lo(即图中的a1_lo、a2_lo、a3_lo),第一一分四功分器u1的第二输出端p2通过电阻r145接地。

也就是说,在本示例性实施例中,与校准分配信号cal类似的,每个第二功分组件4可实现三个本振分配信号lo的输出,分别输出至三路接收通道电路。而根据实际接收通道电路的数量,配置并行的对应数量的第二功分组件4。

另外,在一示例性实施例中,第二一分二功分器u5的型号为gp2y1,第二一分四功分器u4的型号为wp4p。

其中,gp2y1在上述内容已经说明,在此不进行阐述。

而wp4p为mini-circuits的4路分路器/合路器,其特征包括:(1)良好的隔离,29分贝典型;(2)良好的相位不平衡,0.5度典型值;(3)卓越的振幅不平衡,典型值为0.15db;(4)小尺寸,0.118x0.118x0.035;(5)高静电放电水平;(6)水洗。

基于上述任意一个示例性实施例的实现,另外一示例性实施例提供基于球面模块化数字阵列天线,包括多个所述的接收通道电路和与所述接收通道电路输入端连接的天线单元。

更优地,在一示例性实施例中,所述数字阵列天线还包括adc数字采样模块,所述adc数字采样模块的输入端接收所述中频信号if。

该adc数字采样模块用于进行数字化采样,得到数字化中频信号,从而进行后续操作。

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本实用新型创造的保护范围之中。

技术特征:

1.基于球面模块化数字阵列天线的接收通道电路,其特征在于:包括顺次连接的前端电路和变频信道;

所述前端电路包括顺次连接的耦合器、滤波器、限幅器、第一低噪声放大器lna1、第一带通滤波器、第二低噪声放大器lna2、高通滤波器、第一数控衰减器、第三低噪声放大器lna3和移相器,其中所述耦合器的第一输入端接入外部射频信号rf,耦合器的第二输入端接入校准分配信号cal;

所述变频信道包括顺次连接的混频器、第一固定衰减器、第二带通滤波器、第四低噪声放大器lna4、第二数控衰减器、第一低通滤波器、第五低噪声放大器lna5、第二固定衰减器、第二低通滤波器、均衡器,其中混频器的第一输入端与移相器连接,混频器的第二输入端接入外部本振分配信号lo,均衡器的输出端输出中频信号if。

2.根据权利要求1所述的基于球面模块化数字阵列天线的接收通道电路,其特征在于:所述外部射频信号rf由所述数字阵列天线的天线单元产生。

3.根据权利要求1所述的基于球面模块化数字阵列天线的接收通道电路,其特征在于:所述接收通道电路为多个。

4.根据权利要求3所述的基于球面模块化数字阵列天线的接收通道电路,其特征在于:每个接收通道电路输入的校准分配信号cal均由校准分配电路生成,每个接收通道电路输入的本振分配信号lo均由本振分配电路生成。

5.根据权利要求4所述的基于球面模块化数字阵列天线的接收通道电路,其特征在于:所述校准分配电路包括至少一个第一功分组件,所述第一功分组件均包括第一一分二功分器u2和第一一分四功分器u1,第一一分二功分器u2的输入端s连接第一频率源,第一一分二功分器u2的第二输出端p2连接至第一一分四功分器u1的sum端,第一一分二功分器u2的第一输出端p1通过电阻r7接地;第一一分四功分器u1的第一输出端p1、第三输出端p3和第四输出端p4分别输出三路校准分配信号cal,第一一分四功分器u1的第二输出端p2通过电阻r47接地。

6.根据权利要求5所述的基于球面模块化数字阵列天线的接收通道电路,其特征在于:第一一分二功分器u2的型号为gp2y1,第一一分四功分器u1的型号为wp4u。

7.根据权利要求4所述的基于球面模块化数字阵列天线的接收通道电路,其特征在于:所述本振分配电路包括至少一个第二功分组件,所述第二功分组件均包括第二一分二功分器u5和第二一分四功分器u4,第二一分二功分器u5的输入端s连接第二频率源,第二一分二功分器u5的第二输出端p2连接至第二一分四功分器u4的sum端,第二一分二功分器u5的第一输出端p1通过电阻r27接地;第二一分四功分器u4的第一输出端p1、第三输出端p3和第四输出端p4分别输出三路本振分配信号lo,第一一分四功分器u1的第二输出端p2通过电阻r145接地。

8.根据权利要求7所述的基于球面模块化数字阵列天线的接收通道电路,其特征在于:第二一分二功分器u5的型号为gp2y1,第二一分四功分器u4的型号为wp4p。

9.基于球面模块化数字阵列天线,其特征在于:包括多个权利要求1-8中任意一项所述的接收通道电路和与所述接收通道电路输入端连接的天线单元。

10.根据权利要求9所述的基于球面模块化数字阵列天线,其特征在于:还包括adc数字采样模块,所述adc数字采样模块的输入端接收所述中频信号if。

技术总结

本实用新型公开了一种基于球面模块化数字阵列天线的接收通道电路和阵列天线,接收通道电路包括顺次连接的前端电路和变频信道;所述变频信道包括顺次连接的混频器、第一固定衰减器、第二带通滤波器、第四低噪声放大器LNA4、第二数控衰减器、第一低通滤波器、第五低噪声放大器LNA5、第二固定衰减器、第二低通滤波器、均衡器,其中混频器的第一输入端与移相器连接,混频器的第二输入端接入外部本振分配信号LO,均衡器的输出端输出中频信号IF。本实用新型在保证系统的灵敏度和抗干扰能力的前提下,实现下变频和增益调节功能。

技术研发人员:巫良君;杨高宗;王和云;刘建;刘红军;陈德先;雷俊;李想;康东

受保护的技术使用者:成都菲斯洛克电子技术有限公司

技术研发日:.09.09

技术公布日:.02.18

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。