第一句子网 - 唯美句子、句子迷、好句子大全
第一句子网 > 随机过程(2.1)—— 多维随机变量(随机向量)

随机过程(2.1)—— 多维随机变量(随机向量)

时间:2024-02-11 13:34:02

相关推荐

随机过程(2.1)—— 多维随机变量(随机向量)

随机过程本质就是一组与时间相关的随机变量,描述系统在 一系列时刻所处的状态。因此,我们首先补充关于多维随机变量(随机向量)的内容注:本文中加粗大写字母代表矩阵(如 A , B , L \pmb{A,B,L} A,B,L​A,B,L​​A,B,L) 或随机向量(如 X , Y \pmb{X,Y} X,Y​X,Y​​X,Y);加粗小写字母代表数的向量(如 a , b \pmb{a,b} a,b​a,b​​a,b);普通大写字母代表一个随机变量(如 X , Y X,Y X,Y)

文章目录

1. 多维 r.v. 的期望和方差2. 多维 r.v. 的分布函数3. 多维 r.v. 的函数(统计量)的概率密度

1. 多维 r.v. 的期望和方差

记多维 r.v.s. 为 X = [ X 1 X 2 ⋮ X n ] , Y = [ Y 1 Y 2 ⋮ Y n ] \pmb{X} = \begin{bmatrix}X_1\\X_2\\\vdots \\X_n \end{bmatrix}, \pmb{Y} = \begin{bmatrix}Y_1\\Y_2\\\vdots \\Y_n \end{bmatrix} XXX=⎣⎢⎢⎢⎡​X1​X2​⋮Xn​​⎦⎥⎥⎥⎤​,YYY=⎣⎢⎢⎢⎡​Y1​Y2​⋮Yn​​⎦⎥⎥⎥⎤​期望: E X = [ E X 1 E X 2 ⋮ E X n ] E\pmb{X} = \begin{bmatrix}EX_1\\EX_2\\\vdots \\EX_n \end{bmatrix} EXXX=⎣⎢⎢⎢⎡​EX1​EX2​⋮EXn​​⎦⎥⎥⎥⎤​方差(矩阵)

Var ( X ) = ( Cov ( X i , X j ) ) n × n = ( E [ ( X i − E X i ) ( X j − E X j ) ] ) n × n = E [ ( X − E X ) ( X − E X ) ⊤ ] \begin{aligned} \text{Var}(\pmb{X}) &= \big(\text{Cov}(X_i,X_j)\big)_{n\times n} \\ &=\big(E\big[(X_i-EX_i)(X_j-EX_j)\big]\big)_{n\times n} \\ &= E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top \big]\end{aligned} Var(XXX)​=(Cov(Xi​,Xj​))n×n​=(E[(Xi​−EXi​)(Xj​−EXj​)])n×n​=E[(XXX−EXXX)(XXX−EXXX)⊤]​协方差(矩阵)

Cov ( X , Y ) = ( Cov ( X i , Y j ) ) n × n = ( E [ ( X i − E X i ) ( Y j − E Y j ) ] ) n × n = E [ ( X − E X ) ( Y − E Y ) ⊤ ] \begin{aligned} \text{Cov}(\pmb{X},\pmb{Y}) &= (\text{Cov}(X_i,Y_j))_{n\times n} \\ &=\big(E\big[(X_i-EX_i)(Y_j-EY_j)\big]\big)_{n\times n} \\ &= E\big[(\pmb{X}-E\pmb{X})(\pmb{Y}-E\pmb{Y})^\top\big] \end{aligned} Cov(XXX,YYY)​=(Cov(Xi​,Yj​))n×n​=(E[(Xi​−EXi​)(Yj​−EYj​)])n×n​=E[(XXX−EXXX)(YYY−EYYY)⊤]​ 方差矩阵性质: Var ( A X ) = A Var ( X ) A ⊤ \text{Var}(\pmb{AX}) = \pmb{A} \text{Var}(\pmb{X})\pmb{A}^\top Var(AXAXAX)=AAAVar(XXX)AAA⊤,证明如下

Var ( A X ) = E [ ( A X − E A X ) ( A X − E A X ) ⊤ ] = E [ ( A X − A E X ) ( A X − A E X ) ⊤ ] = A E [ ( X − E X ) ( A ( X − E X ) ⊤ ) ] = A E [ ( X − E X ) ( X − E X ) ⊤ A ⊤ ] = A E [ ( X − E X ) ( X − E X ) ⊤ ] A ⊤ = A Var ( X ) A ⊤ \begin{aligned} \text{Var}(\pmb{AX}) &= E\big[(\pmb{AX}-E\pmb{AX})(\pmb{AX}-E\pmb{AX})^\top\big]\\ &= E\big[(\pmb{AX}-\pmb{A}E\pmb{X})(\pmb{AX}-\pmb{A}E\pmb{X})^\top\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{A}(\pmb{X}-E\pmb{X})^\top)\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top\pmb{A}^\top\big]\\ &= \pmb{A}E\big[(\pmb{X}-E\pmb{X})(\pmb{X}-E\pmb{X})^\top\big]\pmb{A}^\top\\ &=\pmb{A} \text{Var}(\pmb{X})\pmb{A}^\top \end{aligned} Var(AXAXAX)​=E[(AXAXAX−EAXAXAX)(AXAXAX−EAXAXAX)⊤]=E[(AXAXAX−AAAEXXX)(AXAXAX−AAAEXXX)⊤]=AAAE[(XXX−EXXX)(AAA(XXX−EXXX)⊤)]=AAAE[(XXX−EXXX)(XXX−EXXX)⊤AAA⊤]=AAAE[(XXX−EXXX)(XXX−EXXX)⊤]AAA⊤=AAAVar(XXX)AAA⊤​ 说明:随机变量的线性组合仍是随机变量,对于一组随机变量,或者 “随机向量” 而言,可以对它们进行线性组合得到一个新的 “随机向量”,并用矩阵形式表示为 A r × n X n × 1 = X r × 1 ′ \pmb{A}_{r\times n}\pmb{X}_{n\times 1} = \pmb{X}'_{r\times 1} AAAr×n​XXXn×1​=XXXr×1′​,即上式中 A X \pmb{AX} AXAXAX

2. 多维 r.v. 的分布函数

对于多维 r.v.s.(随机向量) X = [ X 1 X 2 ⋮ X n ] \pmb{X} = \begin{bmatrix}X_1\\X_2\\\vdots \\X_n \end{bmatrix} XXX=⎣⎢⎢⎢⎡​X1​X2​⋮Xn​​⎦⎥⎥⎥⎤​,其分布函数定义为

F ( X ) = F ( X 1 , X 2 , . . . , X n ) = P ( X 1 ≤ x 1 , X 2 ≤ x 2 , . . . , X n ≤ x n ) = P ( X ≤ x ) F(\pmb{X}) = F(X_1,X_2,...,X_n) = P(X_1\leq x_1,X_2 \leq x_2,...,X_n\leq x_n) = P(\pmb{X} \leq \pmb{x}) F(XXX)=F(X1​,X2​,...,Xn​)=P(X1​≤x1​,X2​≤x2​,...,Xn​≤xn​)=P(XXX≤xxx)两道例题 令 X t = ξ c o s t X_t = \xi cost Xt​=ξcost,其中 P ( ξ = 1 ) = P ( ξ = 2 ) = P ( ξ = 3 ) = 1 3 , t ∈ R P(\xi=1)=P(\xi=2)=P(\xi=3)=\frac{1}{3},t\in\mathbb{R} P(ξ=1)=P(ξ=2)=P(ξ=3)=31​,t∈R,这样就可以通过选取不同的实数 t t t 得到任意维随机向量 { X t } \{X_t\} {Xt​}。求一维分布 F ( x ; π 4 ) , F ( x ; π 2 ) F(x;\frac{\pi}{4}),F(x;\frac{\pi}{2}) F(x;4π​),F(x;2π​) 和二维分布 F ( x 1 , x 2 ; 0 , π 3 ) F(x_1,x_2;0,\frac{\pi}{3}) F(x1​,x2​;0,3π​)令 X t = ξ + η t X_t = \xi +\eta t Xt​=ξ+ηt,其中 ξ , η \xi,\eta ξ,η 为互相独立的标准正态分布, t ∈ R t\in\mathbb{R} t∈R,这样就可以通过选取不同的实数 t t t 得到任意维随机向量 { X t } \{X_t\} {Xt​},求一维分布和二维分布

注:右边第1题答案中第3问,分布列应该是 X t = π 3 = 1 2 , 1 , 3 2 X_{t=\frac{\pi}{3}} = \frac{1}{2},1,\frac{3}{2} Xt=3π​​=21​,1,23​,订正一下

3. 多维 r.v. 的函数(统计量)的概率密度

以二维情况为例,设二维 r.v. X = ( X 1 , X 2 ) \pmb{X}=(X_1,X_2) XXX=(X1​,X2​) 的概率密度函数为

f X ( x 1 , x 2 ) = { f X G ( x 1 , x 2 ) , ( x 1 , x 2 ) ∈ G ⊂ R 0 , ( x 1 , x 2 ) ∉ G f_{\mathbf{X}}(x_1,x_2) = \left\{ \begin{aligned} &f_{\mathbf{X}}^G(x_1,x_2) &&,(x_1,x_2)\in G \subset \mathbb{R} \\ &0 &&,(x_1,x_2)\notin G\\ \end{aligned} \right. fX​(x1​,x2​)={​fXG​(x1​,x2​)0​​,(x1​,x2​)∈G⊂R,(x1​,x2​)∈/​G​ 当有 { Y 1 = g 1 ( X 1 , X 2 ) Y 2 = g 2 ( X 1 , X 2 ) \left\{\begin{aligned}&Y_1 = g_1(X_1,X_2) \\&Y_2 = g_2(X_1,X_2) \end{aligned}\right. {​Y1​=g1​(X1​,X2​)Y2​=g2​(X1​,X2​)​ 时,求 Y = ( Y 1 , Y 2 ) \pmb{Y} = (Y_1,Y_2) YYY=(Y1​,Y2​) 的概率密度函数 f Y ( y 1 , y 2 ) f_{\mathbf{Y}}(y_1,y_2) fY​(y1​,y2​)遵循以下过程求解 依题意,对于 X 1 , X 2 X_1,X_2 X1​,X2​ 的任意取值 x 1 , x 2 x_1,x_2 x1​,x2​,变换 T T T 为

T : { y 1 = g 1 ( x 1 , x 2 ) y 2 = g 2 ( x 1 , x 2 ) T:\left\{ \begin{aligned} &y_1 = g_1(x_1,x_2) \\ &y_2 = g_2(x_1,x_2) \end{aligned} \right. T:{​y1​=g1​(x1​,x2​)y2​=g2​(x1​,x2​)​ 利用变换 T T T,把取值范围变换过来,即利用所有概率非0的 ( x 1 , x 2 ) (x_1,x_2) (x1​,x2​) 找出所有概率非零的 ( y 1 , y 2 ) (y_1,y_2) (y1​,y2​)

G ∗ = T ( G ) G^* = T(G) G∗=T(G)下面求 T T T 的反函数(即利用 y \pmb{y} y​y​​y 表示 x \pmb{x} xxx),先假设有唯一的反函数

{ x 1 = x 1 ( y 1 , y 2 ) x 2 = x 2 ( y 1 , y 2 ) \left\{ \begin{aligned} &x_1 = x_1(y_1,y_2) \\ &x_2 = x_2(y_1,y_2) \end{aligned} \right. {​x1​=x1​(y1​,y2​)x2​=x2​(y1​,y2​)​计算 Jacobi 行列式 (Jacobi 矩阵的行列式)

∣ J ∣ = ∣ ∂ ( x 1 , x 2 ) ∂ ( y 1 , y 2 ) ∣ = ∣ ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 2 ∂ y 2 ∣ |\pmb{J}| = \begin{vmatrix} \frac{\partial(x_1,x_2)}{\partial(y_1,y_2)}\end{vmatrix} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} ∣JJJ∣=∣∣∣​∂(y1​,y2​)∂(x1​,x2​)​​∣∣∣​=∣∣∣∣∣​∂y1​∂x1​​∂y2​∂x1​​​∂y1​∂x2​​∂y2​∂x2​​​∣∣∣∣∣​ 得到 Y = { Y 1 , Y 2 } \pmb{Y} = \{Y_1,Y_2\} YYY={Y1​,Y2​} 的 p.d.f. 为

f Y ( y 1 , y 2 ) = { f X G ( x 1 ( y 1 , y 2 ) , x 2 ( y 1 , y 2 ) ) ∣ J ∣ , ( y 1 , y 2 ) ∈ G ∗ 0 , ( y 1 , y 2 ) ∉ G ∗ f_{\mathbf{Y}}(y_1,y_2) = \left\{ \begin{aligned} &f_{\mathbf{X}}^G\big(x_1(y_1,y_2),x_2(y_1,y_2)\big) |\pmb{J}| &&,(y_1,y_2)\in G^* \\ &0 &&,(y_1,y_2)\notin G^*\\ \end{aligned} \right. fY​(y1​,y2​)={​fXG​(x1​(y1​,y2​),x2​(y1​,y2​))∣JJJ∣0​​,(y1​,y2​)∈G∗,(y1​,y2​)∈/​G∗​若第 2 步中的反函数不唯一,则对每个反函数 x ( i ) \pmb{x}^{(i)} xxx(i) 计算对应的 Jacobi 行列式 ∣ J ( i ) ∣ , i = 1 , 2 , . . . , n |\pmb{J}^{(i)}|,i=1,2,...,n ∣JJJ(i)∣,i=1,2,...,n,最后得到 Y = { Y 1 , Y 2 } \pmb{Y} = \{Y_1,Y_2\} YYY={Y1​,Y2​} 的 p.d.f. 为

f Y ( y 1 , y 2 ) = { ∑ i = 1 n f X G ( x 1 ( i ) ( y 1 , y 2 ) , x 2 ( i ) ( y 1 , y 2 ) ) ∣ J ( i ) ∣ , ( y 1 , y 2 ) ∈ G ∗ 0 , ( y 1 , y 2 ) ∉ G ∗ f_{\mathbf{Y}}(y_1,y_2) = \left\{ \begin{aligned} &\sum_{i=1}^nf_{\mathbf{X}}^G\big(x_1^{(i)}(y_1,y_2),x_2^{(i)}(y_1,y_2)\big) |\pmb{J}^{(i)}| &&,(y_1,y_2)\in G^* \\ &0 &&,(y_1,y_2)\notin G^*\\ \end{aligned} \right. fY​(y1​,y2​)=⎩⎪⎪⎨⎪⎪⎧​​i=1∑n​fXG​(x1(i)​(y1​,y2​),x2(i)​(y1​,y2​))∣JJJ(i)∣0​​,(y1​,y2​)∈G∗,(y1​,y2​)∈/​G∗​ 例题:

设 r.v.s { X , Y } \{X,Y\} {X,Y} 有 X , Y ∼ ϵ ( 1 ) X,Y\sim \epsilon(1) X,Y∼ϵ(1) 且相互独立,对于如下线性变换,求 g ( u , v ) g(u,v) g(u,v) 的 p.d.f

{ U = X + Y V = X / Y \left\{ \begin{aligned} &U = X+Y \\ &V = X/Y \end{aligned} \right. {​U=X+YV=X/Y​ 注意 X , Y X,Y X,Y 独立 ⇔ F X , Y ( x , y ) = F X ( x ) F Y ( y ) \Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y) ⇔FX,Y​(x,y)=FX​(x)FY​(y),答案如下

设 r.v.s { X , Y } \{X,Y\} {X,Y} 有 X , Y ∼ N ( 0 , σ 2 ) X,Y\sim N(0,\sigma^2) X,Y∼N(0,σ2) 且相互独立,对于如下线性变换,求 g ( u , v ) g(u,v) g(u,v) 的 p.d.f

{ U = X 2 + Y 2 V = X / Y \left\{ \begin{aligned} &U = \sqrt{X^2+Y^2} \\ &V = X/Y \end{aligned} \right. {​U=X2+Y2 ​V=X/Y​ 注意 X , Y X,Y X,Y 独立 ⇔ F X , Y ( x , y ) = F X ( x ) F Y ( y ) \Leftrightarrow F_{X,Y}(x,y) = F_X(x)F_Y(y) ⇔FX,Y​(x,y)=FX​(x)FY​(y),答案如下

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。