第一句子网 - 唯美句子、句子迷、好句子大全
第一句子网 > uboot命令之bootm详解

uboot命令之bootm详解

时间:2021-12-31 07:42:07

相关推荐

uboot命令之bootm详解

开发板:DM3730 cortex-a8虚拟机:ubuntu 14.04编译器:gcc-linaro-5.3-.02-x86_64_arm-linux-gnueabihf开发板内核:linux 4.4.12

bootm 用于将内核镜像加载到内存的指定地址处,如果有需要还要解压镜像,然后根据操作系统和体系结构的不同给内核传递不同的启动参数,最后启动内核。

一、arm 架构处理器对 linux 内核启动之前环境的五点需求

1、cpu 寄存器设置

* R0 = 0* R1 = 板级 id* R2 = 启动参数在内存中的起始地址

2、cpu 模式

* 禁止所有中断* 必须为SVC(超级用户)模式

3、缓存、MMU

* 关闭 MMU* 指令缓存可以开启或者关闭* 数据缓存必须关闭并且不能包含任何脏数据

4、设备

* DMA 设备应当停止工作

5、boot loader 需要跳转到内核镜像的第一条指令处

这些需求都由 boot loader 实现,在常用的 uboot 中完成一系列的初始化后最后通过 bootm 命令加载 linux 内核。该命令用法介绍如下:

int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]){ulong iflag;ulong load_end = 0;intret;boot_os_fn *boot_fn;#ifndef CONFIG_RELOC_FIXUP_WORKSstatic int relocated = 0;/* 重定位启动函数表 *//* relocate boot function table */if (!relocated) {int i;for (i = 0; i < ARRAY_SIZE(boot_os); i++)if (boot_os[i] != NULL)boot_os[i] += gd->reloc_off;relocated = 1;}#endif//判断是否有子命令/* determine if we have a sub command */if (argc > 1) {char *endp;simple_strtoul(argv[1], &endp, 16);/* endp pointing to NULL means that argv[1] was just a* valid number, pass it along to the normal bootm processing** If endp is ':' or '#' assume a FIT identifier so pass* along for normal processing.** Right now we assume the first arg should never be '-'*/if ((*endp != 0) && (*endp != ':') && (*endp != '#'))return do_bootm_subcommand(cmdtp, flag, argc, argv);}/* 获取内核相关信息 */if (bootm_start(cmdtp, flag, argc, argv))return 1;/** We have reached the point of no return: we are going to* overwrite all exception vector code, so we cannot easily* recover from any failures any more...*//* 关闭中断 */iflag = disable_interrupts();#if defined(CONFIG_CMD_USB)/** turn off USB to prevent the host controller from writing to the* SDRAM while Linux is booting. This could happen (at least for OHCI* controller), because the HCCA (Host Controller Communication Area)* lies within the SDRAM and the host controller writes continously to* this area (as busmaster!). The HccaFrameNumber is for example* updated every 1 ms within the HCCA structure in SDRAM! For more* details see the OpenHCI specification.*//* 关闭USB */usb_stop();#endif#ifdef CONFIG_AMIGAONEG3SE/** We've possible left the caches enabled during* bios emulation, so turn them off again*//* 关闭指令cache和数据cache */icache_disable();dcache_disable();#endif/* 加载内核 */ret = bootm_load_os(images.os, &load_end, 1);if (ret < 0) {if (ret == BOOTM_ERR_RESET)do_reset (cmdtp, flag, argc, argv);if (ret == BOOTM_ERR_OVERLAP) {if (images.legacy_hdr_valid) {if (image_get_type (&images.legacy_hdr_os_copy) == IH_TYPE_MULTI)puts ("WARNING: legacy format multi component ""image overwritten\n");} else {puts ("ERROR: new format image overwritten - ""must RESET the board to recover\n");show_boot_progress (-113);do_reset (cmdtp, flag, argc, argv);}}if (ret == BOOTM_ERR_UNIMPLEMENTED) {if (iflag)enable_interrupts();show_boot_progress (-7);return 1;}}lmb_reserve(&images.lmb, images.os.load, (load_end - images.os.load));if (images.os.type == IH_TYPE_STANDALONE) {if (iflag)enable_interrupts();/* This may return when 'autostart' is 'no' */bootm_start_standalone(iflag, argc, argv);return 0;}show_boot_progress (8);#ifdef CONFIG_SILENT_CONSOLEif (images.os.os == IH_OS_LINUX)fixup_silent_linux();#endif//获取内核启动参数boot_fn = boot_os[images.os.os];if (boot_fn == NULL) {if (iflag)enable_interrupts();printf ("ERROR: booting os '%s' (%d) is not supported\n",genimg_get_os_name(images.os.os), images.os.os);show_boot_progress (-8);return 1;}//内核启动前的准备arch_preboot_os();/* 启动内核,不返回 */boot_fn(0, argc, argv, &images);show_boot_progress (-9);#ifdef DEBUGputs ("\n## Control returned to monitor - resetting...\n");#endifdo_reset (cmdtp, flag, argc, argv);return 1;}

该函数主要的工作流程是,通过bootm_start来获取内核镜像文件的信息,然后通过bootm_load_os函数来加载内核,最后通过boot_fn来启动内核。

首先看一下bootm_start,该函数主要进行镜像的有效性判定、校验、计算入口地址等操作,大部分工作通过 boot_get_kernel -> image_get_kernel 完成。

static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]){void *os_hdr;int ret;memset ((void *)&images, 0, sizeof (images));//读取环境变量,从环境变量中检查是否要对镜像的数据(不是镜像头)进行校验images.verify = getenv_yesno ("verify");//不做任何有意义的工作,除了定义# define lmb_reserve(lmb, base, size) bootm_start_lmb();//获取镜像头,加载地址,长度,返回指向内存中镜像头的指针/* get kernel image header, start address and length */os_hdr = boot_get_kernel (cmdtp, flag, argc, argv,&images, &images.os.image_start, &images.os.image_len);if (images.os.image_len == 0) {puts ("ERROR: can't get kernel image!\n");return 1;}//根据镜像魔数获取镜像类型 /* get image parameters */switch (genimg_get_format (os_hdr)) {case IMAGE_FORMAT_LEGACY:images.os.type = image_get_type (os_hdr);//镜像类型 p = image_get_comp (os_hdr);//压缩类型 images.os.os = image_get_os (os_hdr);//操作系统类型 images.os.end = image_get_image_end (os_hdr);//当前镜像的尾地址images.os.load = image_get_load (os_hdr);//镜像数据的载入地址 break;#if defined(CONFIG_FIT)case IMAGE_FORMAT_FIT:if (fit_image_get_type (images.fit_hdr_os,images.fit_noffset_os, &images.os.type)) {puts ("Can't get image type!\n");show_boot_progress (-109);return 1;}if (fit_image_get_comp (images.fit_hdr_os,images.fit_noffset_os, &p)) {puts ("Can't get image compression!\n");show_boot_progress (-110);return 1;}if (fit_image_get_os (images.fit_hdr_os,images.fit_noffset_os, &images.os.os)) {puts ("Can't get image OS!\n");show_boot_progress (-111);return 1;}images.os.end = fit_get_end (images.fit_hdr_os);if (fit_image_get_load (images.fit_hdr_os, images.fit_noffset_os,&images.os.load)) {puts ("Can't get image load address!\n");show_boot_progress (-112);return 1;}break;#endifdefault:puts ("ERROR: unknown image format type!\n");return 1;}//获取内核入口地址/* find kernel entry point */if (images.legacy_hdr_valid) {images.ep = image_get_ep (&images.legacy_hdr_os_copy);#if defined(CONFIG_FIT)} else if (images.fit_uname_os) {ret = fit_image_get_entry (images.fit_hdr_os,images.fit_noffset_os, &images.ep);if (ret) {puts ("Can't get entry point property!\n");return 1;}#endif} else {puts ("Could not find kernel entry point!\n");return 1;}if (((images.os.type == IH_TYPE_KERNEL) ||(images.os.type == IH_TYPE_MULTI)) &&(images.os.os == IH_OS_LINUX)) {//获取虚拟磁盘/* find ramdisk */ret = boot_get_ramdisk (argc, argv, &images, IH_INITRD_ARCH,&images.rd_start, &images.rd_end);if (ret) {puts ("Ramdisk image is corrupt or invalid\n");return 1;}#if defined(CONFIG_OF_LIBFDT)//获取设备树,设备树是linux 3.XX版本特有的/* find flattened device tree */ret = boot_get_fdt (flag, argc, argv, &images,&images.ft_addr, &images.ft_len);if (ret) {puts ("Could not find a valid device tree\n");return 1;}set_working_fdt_addr(images.ft_addr);#endif}//将内核加载地址赋值给images.os.startimages.os.start = (ulong)os_hdr;//更新镜像状态images.state = BOOTM_STATE_START;return 0;}

接着看一下bootm_load_os函数,它的主要工作是解压内核镜像文件,并且将它移动到内核加载地址。

首先看一下两个重要的结构体

//include/image.h typedef struct image_header {uint32_t ih_magic; /* Image Header Magic Number */uint32_t ih_hcrc; /* Image Header CRC Checksum */uint32_t ih_time; /* Image Creation Timestamp*/uint32_t ih_size; /* Image Data Size */uint32_t ih_load; /* Data Load Address*/uint32_t ih_ep;/* Entry Point Address*/uint32_t ih_dcrc; /* Image Data CRC Checksum*/uint8_t ih_os;/* Operating System */uint8_t ih_arch; /* CPU architecture */uint8_t ih_type; /* Image Type */uint8_t ih_comp; /* Compression Type */uint8_t ih_name[IH_NMLEN];/* Image Name */} image_header_t;typedef struct image_info {ulong start, end; /* start/end of blob */ulong image_start, image_len; /* start of image within blob, len of image */ulong load; /* load addr for the image */uint8_t comp, type, os; /* compression, type of image, os type */} image_info_t;

static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]){void *os_hdr;int ret;memset ((void *)&images, 0, sizeof (images));//读取环境变量,从环境变量中检查是否要对镜像的数据(不是镜像头)进行校验images.verify = getenv_yesno ("verify");//不做任何有意义的工作,除了定义# define lmb_reserve(lmb, base, size) bootm_start_lmb();//获取镜像头,加载地址,长度,返回指向内存中镜像头的指针/* get kernel image header, start address and length */os_hdr = boot_get_kernel (cmdtp, flag, argc, argv,&images, &images.os.image_start, &images.os.image_len);if (images.os.image_len == 0) {puts ("ERROR: can't get kernel image!\n");return 1;}//根据镜像魔数获取镜像类型 /* get image parameters */switch (genimg_get_format (os_hdr)) {case IMAGE_FORMAT_LEGACY:images.os.type = image_get_type (os_hdr);//镜像类型 p = image_get_comp (os_hdr);//压缩类型 images.os.os = image_get_os (os_hdr);//操作系统类型 images.os.end = image_get_image_end (os_hdr);//当前镜像的尾地址images.os.load = image_get_load (os_hdr);//镜像数据的载入地址 break;#if defined(CONFIG_FIT)case IMAGE_FORMAT_FIT:if (fit_image_get_type (images.fit_hdr_os,images.fit_noffset_os, &images.os.type)) {puts ("Can't get image type!\n");show_boot_progress (-109);return 1;}if (fit_image_get_comp (images.fit_hdr_os,images.fit_noffset_os, &p)) {puts ("Can't get image compression!\n");show_boot_progress (-110);return 1;}if (fit_image_get_os (images.fit_hdr_os,images.fit_noffset_os, &images.os.os)) {puts ("Can't get image OS!\n");show_boot_progress (-111);return 1;}images.os.end = fit_get_end (images.fit_hdr_os);if (fit_image_get_load (images.fit_hdr_os, images.fit_noffset_os,&images.os.load)) {puts ("Can't get image load address!\n");show_boot_progress (-112);return 1;}break;#endifdefault:puts ("ERROR: unknown image format type!\n");return 1;}//获取内核入口地址/* find kernel entry point */if (images.legacy_hdr_valid) {images.ep = image_get_ep (&images.legacy_hdr_os_copy);#if defined(CONFIG_FIT)} else if (images.fit_uname_os) {ret = fit_image_get_entry (images.fit_hdr_os,images.fit_noffset_os, &images.ep);if (ret) {puts ("Can't get entry point property!\n");return 1;}#endif} else {puts ("Could not find kernel entry point!\n");return 1;}if (((images.os.type == IH_TYPE_KERNEL) ||(images.os.type == IH_TYPE_MULTI)) &&(images.os.os == IH_OS_LINUX)) {//获取虚拟磁盘/* find ramdisk */ret = boot_get_ramdisk (argc, argv, &images, IH_INITRD_ARCH,&images.rd_start, &images.rd_end);if (ret) {puts ("Ramdisk image is corrupt or invalid\n");return 1;}#if defined(CONFIG_OF_LIBFDT)//获取设备树,设备树是linux 3.XX版本特有的/* find flattened device tree */ret = boot_get_fdt (flag, argc, argv, &images,&images.ft_addr, &images.ft_len);if (ret) {puts ("Could not find a valid device tree\n");return 1;}set_working_fdt_addr(images.ft_addr);#endif}//将内核加载地址赋值给images.os.startimages.os.start = (ulong)os_hdr;//更新镜像状态images.state = BOOTM_STATE_START;return 0;}#define BOOTM_ERR_RESET -1#define BOOTM_ERR_OVERLAP -2#define BOOTM_ERR_UNIMPLEMENTED -3static int bootm_load_os(image_info_t os, ulong *load_end, int boot_progress){uint8_t comp = p;//压缩格式ulong load = os.load;//加载地址ulong blob_start = os.start;//系统起始地址ulong blob_end = os.end;//系统结束地址ulong image_start = os.image_start;//镜像起始地址ulong image_len = os.image_len;//镜像大小uint unc_len = CONFIG_SYS_BOOTM_LEN;//镜像最大长度#if defined(CONFIG_LZMA) || defined(CONFIG_LZO)int ret;#endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) *///获取镜像类型const char *type_name = genimg_get_type_name (os.type);switch (comp) {case IH_COMP_NONE://镜像没有压缩过if (load == blob_start) {//判断是否需要移动镜像printf (" XIP %s ... ", type_name);} else {printf (" Loading %s ... ", type_name);memmove_wd ((void *)load, (void *)image_start,image_len, CHUNKSZ);}*load_end = load + image_len;puts("OK\n");break;#ifdef CONFIG_GZIPcase IH_COMP_GZIP://镜像使用gzip压缩printf (" Uncompressing %s ... ", type_name);//解压镜像文件if (gunzip ((void *)load, unc_len,(uchar *)image_start, &image_len) != 0) {puts ("GUNZIP: uncompress, out-of-mem or overwrite error ""- must RESET board to recover\n");if (boot_progress)show_boot_progress (-6);return BOOTM_ERR_RESET;}*load_end = load + image_len;break;#endif /* CONFIG_GZIP */......return 0;}

最后看一下boot_fn函数,boot_fn的定义为

boot_os_fn *boot_fn;

可以看出它是一个boot_os_fn类型的函数指针。它的定义为

// common/cmd_bootm.ctypedef int boot_os_fn (int flag, int argc, char * const argv[],bootm_headers_t *images); /* pointers to os/initrd/fdt */#ifdef CONFIG_BOOTM_LINUXextern boot_os_fn do_bootm_linux;#endif......

然后boot_fn在do_bootm函数中被赋值为

boot_fn = boot_os[images.os.os];

boot_os是一个函数指针数组

// common/cmd_bootm.cstatic boot_os_fn *boot_os[] = {#ifdef CONFIG_BOOTM_LINUX[IH_OS_LINUX] = do_bootm_linux,#endif#ifdef CONFIG_BOOTM_NETBSD[IH_OS_NETBSD] = do_bootm_netbsd,#endif#ifdef CONFIG_LYNXKDI[IH_OS_LYNXOS] = do_bootm_lynxkdi,#endif#ifdef CONFIG_BOOTM_RTEMS[IH_OS_RTEMS] = do_bootm_rtems,#endif#if defined(CONFIG_BOOTM_OSE)[IH_OS_OSE] = do_bootm_ose,#endif#if defined(CONFIG_CMD_ELF)[IH_OS_VXWORKS] = do_bootm_vxworks,[IH_OS_QNX] = do_bootm_qnxelf,#endif#ifdef CONFIG_INTEGRITY[IH_OS_INTEGRITY] = do_bootm_integrity,#endif};

可以看出 boot_fn 函数指针最后指向的函数是位于 arch/arm/lib/bootm.c的 do_bootm_linux,这是内核启动前最后的一个函数,该函数主要完成启动参数的初始化,并将板子设定为满足内核启动的环境。

int do_bootm_linux(int flag, int argc, char *argv[], bootm_headers_t *images){//从全局变量结构体中获取串口参数bd_t *bd = gd->bd;char *s;//获取机器码int machid = bd->bi_arch_number;//内核入口函数void (*kernel_entry)(int zero, int arch, uint params);int ret;//获取启动参数#ifdef CONFIG_CMDLINE_TAGchar *commandline = getenv ("bootargs");#endifif ((flag != 0) && (flag != BOOTM_STATE_OS_GO))return 1;//从环境变量中获取机器码s = getenv ("machid");if (s) {machid = simple_strtoul (s, NULL, 16);printf ("Using machid 0x%x from environment\n", machid);}//获取ramdiskret = boot_get_ramdisk(argc, argv, images, IH_ARCH_ARM, &(images->rd_start), &(images->rd_end));if(ret)printf("[err] boot_get_ramdisk\n");show_boot_progress (15);#ifdef CONFIG_OF_LIBFDTif (images->ft_len)return bootm_linux_fdt(machid, images);#endifkernel_entry = (void (*)(int, int, uint))images->ep;debug ("## Transferring control to Linux (at address %08lx) ...\n",(ulong) kernel_entry);#if defined (CONFIG_SETUP_MEMORY_TAGS) || \defined (CONFIG_CMDLINE_TAG) || \defined (CONFIG_INITRD_TAG) || \defined (CONFIG_SERIAL_TAG) || \defined (CONFIG_REVISION_TAG)setup_start_tag (bd);#ifdef CONFIG_SERIAL_TAGsetup_serial_tag (params);#endif#ifdef CONFIG_REVISION_TAGsetup_revision_tag (params);#endif#ifdef CONFIG_SETUP_MEMORY_TAGSsetup_memory_tags (bd);#endif#ifdef CONFIG_CMDLINE_TAGsetup_commandline_tag (bd, commandline);#endif#ifdef CONFIG_INITRD_TAGif (images->rd_start && images->rd_end)setup_initrd_tag (bd, images->rd_start, images->rd_end);#endifsetup_end_tag(bd);#endifannounce_and_cleanup();#ifdef CONFIG_ENABLE_MMUtheLastJump((void *)virt_to_phys(kernel_entry), machid, bd->bi_boot_params);#elsekernel_entry(0, machid, bd->bi_boot_params);/* does not return */#endifreturn 1;}

kernel_entry(0, machid, r2)

真正将控制权交给内核, 启动内核;

满足arm架构linux内核启动时的寄存器设置条件:第一个参数为0 ;第二个参数为板子id需与内核中的id匹配,第三个参数为启动参数地址bi_boot_params 。

(1)首先取出环境变量bootargs,这就是要传递给内核的参数。

(2)调用setup_XXX_tag

kernel_entry(0, machid, r2) 真正将控制权交给内核, 启动内核;满足arm架构linux内核启动时的寄存器设置条件:第一个参数为0 ;第二个参数为板子id需与内核中的id匹配,第三个参数为启动参数地址bi_boot_params 。(1)首先取出环境变量bootargs,这就是要传递给内核的参数。(2)调用setup_XXX_tag

params是一个用来存储要传给kernel的参数的静态全局变量。

u-boot 是通过标记列表向内核传递参数,标记在源代码中定义为tag,是一个结构体,在 arch/arm/include/asm/setup.h 中定义。

struct tag { struct tag_header hdr;union {struct tag_core core;struct tag_mem32 mem;struct tag_videotext videotext;struct tag_ramdiskramdisk;struct tag_initrd initrd;struct tag_serialnrserialnr;struct tag_revisionrevision;struct tag_videolfbvideolfb;struct tag_cmdlinecmdline;/** Acorn specific*/struct tag_acorn acorn;/** DC21285 specific*/struct tag_memclk memclk;} u;

tag包括hdr和各种类型的tag_*,hdr来标志当前的tag是哪种类型的tag。setup_start_tag是初始化了第一个tag,是tag_core类型的tag。最后调用tag_next跳到第一个tag末尾,为下一个tag做准备。

tag_next是一个宏定义,被定义在arch/arm/include/asm/setup.h中

#define tag_next(t)((struct tag *)((u32 *)(t) + (t)->hdr.size))

struct tag_header {u32 size;u32 tag;};

最后调用setup_end_tag,将末尾的tag设置为ATAG_NONE,标志tag列表结束。

static void setup_end_tag (bd_t *bd) {params->hdr.tag = ATAG_NONE;params->hdr.size = 0;}

u-boot将参数以tag数组的形式布局在内存的某一个地址,每个tag代表一种类型的参数,首尾tag标志开始和结束,首地址传给kernel供其解析

通过上面的分析,我们可以尝试自己写一个bootm来引导内核

//atag.h#define ATAG_CORE 0x54410001#define ATAG_MEM 0x54410002#define ATAG_CMDLINE 0x54410009#define ATAG_NONE 0x00000000struct tag_header {unsigned int size;unsigned int tag;};struct tag_core {unsigned int flags; unsigned int pagesize;unsigned int rootdev;};struct tag_mem32 {unsigned int size;unsigned int start; };struct tag_cmdline {char cmdline[1]; };struct tag {struct tag_header hdr;union {struct tag_core core;struct tag_mem32 mem;struct tag_cmdline cmdline;} u;};#define tag_size(type) ((sizeof(struct tag_header) + sizeof(struct type)) >> 2)#define tag_next(t) ((struct tag *)((unsigned int *)(t) + (t)->hdr.size))

//boot.c#include "atag.h"#include "string.h"void (*theKernel)(int , int , unsigned int );#define SDRAM_KERNEL_START 0x51000000#define SDRAM_TAGS_START 0x50000100#define SDRAM_ADDR_START 0x50000000#define SDRAM_TOTAL_SIZE 0x16000000struct tag *pCurTag;const char *cmdline = "console=ttySAC0,115200 init=/init";void setup_core_tag(){pCurTag = (struct tag *)SDRAM_TAGS_START;pCurTag->hdr.tag = ATAG_CORE;pCurTag->hdr.size = tag_size(tag_core); pCurTag->u.core.flags = 0;pCurTag->u.core.pagesize = 4096;pCurTag->u.core.rootdev = 0;pCurTag = tag_next(pCurTag);}void setup_mem_tag(){pCurTag->hdr.tag = ATAG_MEM;pCurTag->hdr.size = tag_size(tag_mem32); pCurTag->u.mem.start = SDRAM_ADDR_START;pCurTag->u.mem.size = SDRAM_TOTAL_SIZE;pCurTag = tag_next(pCurTag);}void setup_cmdline_tag(){int linelen = strlen(cmdline);pCurTag->hdr.tag = ATAG_CMDLINE;pCurTag->hdr.size = (sizeof(struct tag_header)+linelen+1+4)>>2;strcpy(pCurTag->u.cmdline.cmdline,cmdline);pCurTag = tag_next(pCurTag);}void setup_end_tag(){pCurTag->hdr.tag = ATAG_NONE;pCurTag->hdr.size = 0;}void boot_linux(){//1.获取Linux启动地址theKernel = (void (*)(int , int , unsigned int ))SDRAM_KERNEL_START;printf("huo qu linux qi dong di zhi");//2.设置启动参数//2.1.设置核心启动参数setup_core_tag();//2.2.设置内存参数setup_mem_tag();//2.3.设置命令行参数setup_cmdline_tag();//2.4.设置结束标志setup_end_tag();//4.启动Linux内核theKernel(0,1626,SDRAM_TAGS_START);printf("qi dong linux nei he");}

转自/CoderTian/p/6006400.html

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。